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Abstract 
 

Purpose – This research intends to improve the K-Nearest Neighbor Algorithm's data 
preparation, emphasizing improving disease prediction across datasets of varied sizes 
by addressing imbalanced datasets and optimizing the selection of an effective k value. 

 
Method – The researchers utilized SMOTE and GridSearch to address challenges in 
the K-Nearest Neighbor Algorithm. SMOTE balanced the datasets to prevent 
inaccurate representations, while GridSearch improved the k value accuracy, reducing 
challenges with constant fixed k values. These techniques contributed to the study's 
overall effectiveness in accurately predicting diseases. 

 
Results – When compared to eight datasets, the improved K-Nearest Neighbor 
algorithm consistently surpasses the previous approach in terms of accuracy, precision, 
RMSE, MSE, and t-test evaluation. The findings suggest that the enhanced KNN 
algorithm outperformed the existing KNN method in terms of prediction. This resulted 
in improved performance in predicting a wide range of medical problems across eight 
datasets. 

 
Conclusion – In conclusion, the study effectively aimed to boost the performance of 
the K-Nearest Neighbor (KNN) algorithm in categorizing medical conditions through 
enhanced data pre-processing techniques. Ultimately, the study's findings show that 
the enhanced KNN algorithm is effective in accurately predicting medical disease 
across a variety of datasets. 

 
Recommendations – The researchers recommend employing high-dimensional datasets 
to address the 'Dimensionality Curse’ and to further ascertain the significance of this 
study. The results of this study will help improve medical diagnostics by predicting 
diseases more accurately.  

 
Research Implications – The outcomes of this study offer improved medical diagnostics 
through more precise disease prediction, hence improving the effectiveness of 
the K-Nearest Neighbor (KNN) algorithm in identifying various health conditions. 
 
Practical Implications – Through these enhancements, healthcare practitioners will be 
able to take action quickly, providing early treatment interventions and individualized 
treatment approaches, as disease prediction becomes more accurate. 

 
Keywords – KNN, machine learning, SMOTE, GridSearch 
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INTRODUCTION 

 
K-Nearest Neighbor learns by retaining the entire training set and assigns a class 

to each query based on the majority label of its k-nearest neighbors. The classifier's 
performance hinges on the choice of K and the applied distance metric. The selection 
of K impacts the estimate's sensitivity, with smaller K values leading to poor local 
estimates due to data sparseness, noise, or mislabeled points. Increasing K smooths 
the estimate but risks over-smoothing and degraded performance with the 
introduction of outliers from other classes (Imandoust & Bolandraftar, 2013). 

 
As medical diseases become more prevalent, the need for precise prediction 

models grows. This study aims to improve the performance of the K-Nearest Neighbor 
algorithm in medical risk prediction. To prevent biased predictions towards the 
majority sample, which may affect the accuracy of predicting medical conditions, it 
addresses the problem of imbalanced datasets. The research also concentrates on 
resolving the fixed k input to avoid underfitting and overfitting, which can affect the 
algorithm's performance. These enhancements aim to contribute to healthcare by 
paving the way for more reliable prediction systems, benefiting patient care and 
outcomes. 

 

LITERATURE REVIEW 
 
K-Nearest Neighbor in Disease Prediction 

 
The k-nearest neighbor (KNN) algorithm is frequently employed for predicting 

diseases and is primarily used in classification tasks. This supervised algorithm predicts 
the classification of unlabeled data by considering the features and labels of the 
training data. Essentially, the KNN algorithm categorizes datasets by evaluating a 
training model against a testing query. It does this by assessing the k nearest training 
data points (referred to as neighbors) that closely match the query being examined. 
Ultimately, the algorithm employs a majority voting method to decide on the final 
classification. Renowned for its simplicity, the KNN algorithm finds extensive use in 
classification tasks owing to its straightforward and flexible structure (Uddin et al., 
2022). 

 

Imbalance Dataset 
 

In the study of Thabtah et al. (2020), classifiers in machine learning seek to 
enhance predicted accuracy while decreasing misclassification errors. Real-world 
datasets, particularly in medical diagnostics, often show class imbalance, with one class 
having much fewer instances than the others. This imbalance is particularly common in 
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models that detect rare but severe disorders such as autism spectrum disorder. 
 

In the study of Rattan et al. (2021), the goal of their experiment is to compare 
the prediction of 4 machine learning algorithms and to identify if SMOTE will enhance 
the four machine learning algorithms’ predictive accuracy in classifying academic 
scores accurately. To balance the dataset during preprocessing, oversampling 
techniques such as SMOTE is employed. A dataset is considered unbalanced if the 
classification categories are not roughly represented in the same proportion. The 
experiment showed that with SMOTE the classifiers' performances improved by 10%. 
The 4 classifiers with SMOTE produced higher correctly classified instances, incorrectly 
classified instances, percentage of correctly classified instances, and a lower 
percentage of misclassified instances than the 4 classifiers without SMOTE. 

 

Determining the k value 
 

Authors Hassanat et al. (2014) note that, typically, the K parameter for the KNN 
classifier is selected empirically. Various nearest neighbor counts are tested for each 
issue, and the classifier's definition is based on the parameter that performs best 
(accuracy). Nevertheless, picking the best K for a range of issues is practically 
impossible because a KNN classifier's performance changes considerably when K and 
the distance measure it uses are modified. However, it has been demonstrated in the 
literature that it is challenging to predict the value of K in advance when the examples 
are not evenly distributed. In the study of Gupta and Goel (2020), the ideal K value has 
been studied to get the best performance out of the KNN classifier. Finding the ideal 
number of neighbors (K) where it performs best is a little difficult. It varies from 
dataset to dataset. 

 
Dimas and Mukti (2021) made a comparative study of Grid Search and Random 

Search methods for hyperparameter tuning of Chronic Kidney Failure. In the authors' 
study, the Grid Search and Random Search methods are utilized in the Extreme 
Gradient Boosting Algorithm to accurately predict chronic kidney failure. In this 
process, hyperparameters were tuned to obtain the optimal parameter values. After 
training and evaluation, the results demonstrated that the Grid Search method 
successfully identified the best hyperparameters, achieving an accuracy of 99.28%. 

 

METHODOLOGY 
 

The study utilized eight distinct medical datasets, each distinguished by its own 
set of instances and features. The diversity of these datasets facilitated a 
comprehensive assessment of both the current and proposed KNN algorithms' 
performance in accurately predicting medical diseases. There are 768 instances and 8 
matching features in the PIMA Diabetes dataset (UCI Machine Learning, 2016). An 
open-source dataset for a large diabetes dataset with 388,754 instances and 21 
features was made available by the CDC in 2021. The Stroke dataset (Fedesoriano, 2021) 
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has 10 features and 4,909 instances. There are 583 instances in the UCI Machine 
Learning (2016) Liver dataset, and each instance has 10 corresponding features. This 
study also used 569 instances with 30 features collected from the UCI Machine 
Learning, 2016 Breast Cancer dataset. In the SEER Breast Cancer data (Mandala, 2023) 
are 11 features with 4,024 instances. A dataset with 8,763 cases and 17 features for 
heart attack risk prediction was made available by Banerjee (2024). The 195 cases in the 
Oxford Parkinson's Disease Dataset (Ahmad, 2023) correspond to 22 features. These 
datasets were acquired from various open-source websites. Below is the tabulated 
overview of the datasets, accompanied by their respective numbers of instances and 
features (Table 1): 

 
Table 1. Dataset Table 

 

Dataset 
 

Instances and Features 
 

PIMA Diabetes 
 

(768,8) 
 

  Large Diabetes Dataset 

 

  (388754,21) 

 

  Stroke 

 

  (4909,10) 

 

  Liver 

 

  (583,10) 

 

  Breast Cancer 

 

  (569,30) 

 

  Large Breast Cancer Dataset 

 

  (4024, 11) 

 

  Heart Attack 

 

  (8763,17) 

 

  Parkinson’s Disease 

 

  (195, 22) 

 

Enhanced K-Nearest Neighbor Conceptual Framework 
 

To further enhance the K-Nearest Neighbor (KNN) framework, we concentrate 
on tuning parameters and resolving class imbalances. The aim is to increase the 
algorithm's precision and performance, in a diverse dataset, especially when handling 
large datasets (Figure 1). 
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Figure 1. Enhanced K-Nearest Neighbor Conceptual Framework 
 

Data pre-processing involves a series of steps to ensure the dataset's 
cleanliness, consistency, and compatibility with the algorithm's requirements, 
contributing to the robustness and reliability of the KNN classification model. It begins 
with the normalization or standardization of features to bring them to a consistent 
scale, the categorical features encoded to a numerical format to facilitate distance 
calculations, then the data will undergo the SMOTE technique to correct any 
imbalanced data in the dataset. 

 
To address the imbalanced datasets, the researchers employed the Synthetic 

Minority Over-sampling Technique (SMOTE). SMOTE is often utilized in situations 
involving class imbalance as it provides synthetic samples for the minority class to 
balance the dataset. In this scenario, because the dataset is uneven, SMOTE is used to 
ensure that the model is trained on a more representative collection of data, enabling 
it to learn patterns from the minority class and improve the overall performance of 
the model. The researchers used the SMOTE technique to balance the dataset, which 
involved identifying the X and Y variables in the dataset, initiating the SMOTE 
technique for balancing, creating Z at a random point on the line segment using the 
formula Z = X0 + w (X-X0) and storing the balanced dataset in a designated variable. 

 
Furthermore, to determine the optimal value of k in the K-Nearest Neighbor 

algorithm, the researchers employed the GridSearch technique for hyperparameter 
tuning. GridSearch is a widely utilized algorithm in machine learning for identifying the 
best combination of hyperparameters for a given model. In this study, it was utilized to 
systematically evaluate different k values and enhance the algorithm's performance in 
medical risk prediction tasks through cross-validation. The researchers conducted 
hyperparameter tuning, initializing parameters, setting the number of cross-folds to 5, 
and defining a grid from 1 to 50. A model object was then created with these 
parameters and fitted to the training data. The researchers aim to enhance the 
algorithm's performance in medical risk prediction tasks by systematically evaluating 
different k values through cross-validation. 

 
The data will be classified using the KNN technique after pre-processing and 

enhancements. This algorithm uses the updated features to find the data's k-nearest 
neighbors. Following the KNN algorithm's classification of the data, the model's 
accuracy is assessed. It is then evaluated in terms of performance metrics, including 
receiver operating curve graph, accuracy, precision, and t-test. 

 
Evaluation and Testing Metrics 

 
To evaluate the performance of the modified KNN algorithm, the following are 

employed to assess the prediction accuracy of the KNN model: 
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Accuracy: The sum of two accurate projections is used to calculate accuracy. (TP 
+ TN)/total number of data sets (P + N) (Equation 1). The best possible accuracy is 1.0, 
while the worst possible accuracy is 0.00 (Vujović, 2021): 

 
 

 
 

Precision: It computes the ratio of the number of precise positive projections 
(TP) to the overall number of positive predictions (TP + FP). 1.0 is the highest 
accuracy while 
0.0 is the lowest (Equation 2). True positives and false positives are denoted by the 

letters TP and FP, respectively (Vujović, 2021): 

 
 

Root Mean Squared Error (RMSE) (Equation 3): The root mean square error is 
expressed in terms of what would occur if a basic predictor were applied. Below is the 
formula for the root mean square error (RMSE) Ei of an individual model (Vujović, 2021): 

 
 

 
The target value for record j is Tj, and the value predicted by individual model i 

for record j (of n records) is P(ij). For a perfect prediction, P (ij) = Tj and Ei = 0. As a result, 
the ideal value of the index Ei is 0, and its range is 0 to infinity 

 

Mean Absolute Error (MSE) (Equation 4): the mean of all the test set's 
instances' absolute values for each prediction mistake. The difference for each 
instance between the actual and expected values is known as the prediction error 
(Vujović, 2021): 

 

 

where Tj is the goal value for record j and P(ij) is the value predicted by individual 
model i for record j (of n records). A perfect prediction has Ei = 0 and P(ij) = Tj. As a result, 
the index Ei is a number between 0 and infinity, where 0 represents the idea. 

 

The paired t-test is essentially a variation of the one-sample t-test (Equation 5), 



 

3666 

 

focusing on the differences within pairs of data points. When there is no difference 
between the paired data points (null hypothesis), the test statistic T2 follows a t-
distribution with degrees of freedom equal to the sample size minus one (df = n-1). 
Below is the t-test equation (Xu et al., 2017): 

 
 

RESULTS 

Evaluation Results of the Existing and Enhanced KNN Algorithm across 
Eight Medical Datasets 

 

The researchers employed the k value derived from the GridSearch and applied 
it to both the existing and enhanced KNN to compare their results (Table 2). Significant 
differences between various datasets are observed when comparing the accuracy 
results of the k value from the enhanced KNN with the k value obtained from 
improvements made to an existing algorithm. In the PIMA Diabetes dataset, the 
enhanced KNN achieves an accuracy of 76.67%, surpassing the existing KNN's accuracy 
of 71.35% by 5.32%. Similarly, in the larger Diabetes dataset with 388,754 instances and 
21 features, the enhanced KNN achieves a significantly higher accuracy of 72.93% 
compared to the existing KNN's accuracy of 61.56%, representing an 11.37% difference.  

 

For the Stroke dataset, the enhanced KNN yields an accuracy of 88.23%, 
outperforming the existing KNN's accuracy of 77.14% by 11.09%. In the evaluation of the 
Breast Cancer dataset, the enhanced KNN achieves an accuracy of 81.82% with a 
precision of 90.9%, while the existing KNN with the same k value of 48 achieves an 
accuracy of 67.13%. Likewise, in the large Breast Cancer dataset, the enhanced KNN 
attains an accuracy of 76%, showing a 3.83% difference compared to the existing KNN's 
accuracy of 72.18%. In contrast, the existing KNN performs better in the Liver disease 
dataset with an accuracy of 69.86% compared to the enhanced KNN's accuracy of 
68.18%, demonstrating only a 1.68% difference. Overall, the enhanced KNN algorithm 
showcases superior performance across the remaining seven medical datasets, 
reflecting the effectiveness of the enhancements in enhancing prediction accuracy. 

 
Notably, the enhanced KNN demonstrates improvements in Precision, RMSE, 

and MSE compared to the existing KNN in nearly all datasets. Furthermore, 
improvements are seen in the RMSE and MSE values, with the enhanced KNN 
consistently producing lower values than the existing KNN. Lower RMSE and MSE 
values suggest that the enhanced KNN algorithm makes predictions that are more 
accurate and reliable. 
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Table 2. Evaluation of Enhanced vs. Existing KNN Algorithm in PIMA Diabetes Dataset 
 

KNN 
Algorithm 

 
Dataset 

 
K value 

 
Accuracy (%) 

 

Precision 
(%) 

 
RMSE 

 
MSE 

 
Existing 

 

PIMA Diabetes 
(768,8) 

 
31 

 
71.35 

 
65 

 
0.5352 

 
0.2864 

Enhanced PIMA Diabetes 
(768,8) 

31 76.67 68.57 0.483 0.2334 

 
Existing 

Large Diabetes 
Dataset 

(388754,21) 

 
48 

 
61.56 

 
69.94 

 
0.5306 

 
0.2815 

Enhanced 
Large Diabetes 

Dataset (388754,21) 48 72.93 72.39 0.5202 0.2706 

Existing Stroke (4909,10) 1 77.14 77.34 0.478 0.229 

Enhanced Stroke (4909,10) 1 88.23 86.5 0.343 0.118 

Existing Liver (583,10) 26 68.78 73.08 0.549 0.3014 

Enhanced Liver (583,10) 26 71.27 75 0.564 0.3181 

Existing Breast Cancer 
(569,30) 

48 60 68.07 0.5732 0.3286 

Enhanced Breast Cancer  
(569,30) 

48 92.1 90.9 0.4264 0.1818 

 

Existing 
Large Breast 

Cancer Dataset 
(4024, 11) 

 

1 
 

66.81 
 

75.31 

 

0.5274 
 

0.2782 

 

Enhanced 
Large Breast 

Cancer Dataset 
(4024, 11) 

1  

78.75 
 

78.14 

 

0.4899 
 

0.24 

Existing Heart Attack 
(8763,17) 

1 55.77 37.73 0.665 0.4422 

Enhanced Heart Attack 
(8763,17) 

1 58.89 58.88 0.6411 0.411 

Existing Parkinson’s 
Disease 
(195, 22) 

1 84.75 88.89 0.39057 0.1525 

Enhanced Parkinson’s 
Disease 
(195, 22) 

1 92.5 100 0.2236 0.05 

 

T-test Results of the Existing and Enhanced KNN Algorithm across Eight Medical 
Datasets 
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A paired t-test was conducted to assess the before and after enhancement of 
the same dataset to analyze the significance done by the enhancement. In contrast, the 
significance should be less than the standard significance level of 0.05 alpha for it to be 
deemed statistically significant. Below are the following results of the t-test (Table 3). 

 
The evaluation of the t-test on the enhanced KNN algorithm above 

demonstrates the significance of the enhancements in each dataset. Seven out of 
eight datasets' p-values obtained from the t-test are less than 0.05. indicating 
statistical significance. In particular, for datasets related to PIMA Diabetes, Stroke, 
Liver, Breast Cancer, Parkinson's Disease, Diabetes (Large dataset), and Breast Cancer 
(Large Dataset), the p-values are all less than 0.05, suggesting that the enhancements 
have led to statistically significant changes in these datasets. However, for the Heart 
Attack dataset, the obtained p-value is greater than 0.05, indicating that the 
enhancements did not result in a statistically significant change in this dataset. Overall, 
this analysis demonstrates that enhancements to the KNN algorithm have led to 
significant improvements in the majority of the datasets evaluated. 

 

Table 3. T-test of the Enhanced KNN Algorithm 

Accuracy 

t-Test: Paired Two Samples for Means 

 P(T<=t) two-tail Result 

PIMA Diabetes 0.031208 < 0.05 therefore significant 

Stroke 0.006948 < 0.05 therefore significant 

Liver 0.022435 < 0.05 therefore significant 

Breast Cancer 0.003883 < 0.05 therefore significant 

Heart Attack 0.370749 >0.05 therefore NOT 
significant 

Parkinson's Disease 0.016227 < 0.05 therefore significant 

Diabetes (Large dataset) 0.000787 < 0.05 therefore significant 

Breast Cancer (Large 
Dataset) 

0.045612 < 0.05 therefore significant 

 

DISCUSSION 
 

This study aims to enhance the data pre-processing of the K-Nearest Neighbor 
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(KNN) algorithm to improve classifications across various types of datasets for 
different medical diseases. The study underwent two phases to evaluate the 
performances of the existing and enhanced KNN in predicting medical diseases 
accurately. The first phase of the study is the evaluation of the enhanced KNN. The 
enhanced KNN is then run to train and evaluate eight medical datasets. The second 
phase of the study is the evaluation of existing KNN when introduced to the derived k 
value from the enhanced KNN. After completing the two phases, the results from the 
enhanced KNN, and the existing KNN with the introduction of the GridSearch k value 
are compared. This comparison aims to differentiate significant differences in the 
overall performance of the algorithm, ultimately providing an accurate representation 
of the data. 

 
From the provided data, it's evident that the enhanced KNN algorithm 

consistently outperforms the existing KNN algorithm across various datasets and 
evaluation metrics. The findings of the assessment of the enhanced KNN algorithm 
provide substantial evidence that the objectives specified in the research have been 
successfully met. Notably, as compared to the existing KNN method, the modifications 
have significantly improved prediction performance across a variety of medical 
datasets, as shown by higher Accuracy, Precision, and lower RMSE and MSE values. 
This is consistent with the study's objective of enhancing the algorithm's performance 
in medical risk prediction. Furthermore, the modifications have effectively addressed 
the issue of imbalanced datasets by consistently outperforming the existing KNN 
algorithm on datasets with variable class distributions. This indicates the modifications' 
effectiveness in reducing biases associated with imbalanced data sets while also 
enhancing prediction accuracy regardless of class imbalances. Additionally, the 
flexibility given by the modifications allows the algorithm to adapt to different 
datasets and avoid the challenges of fixed k input, resulting in improved predicted 
accuracy without being restricted by specific k numbers. Overall, the results show that 
the improvements made to the KNN algorithm help to design more reliable prediction 
systems in healthcare, which benefits patient care and outcomes. 

 
Aside from the obtained Accuracy, Precision, RMSE, and MSE, the enhanced 

KNN also showed significance across the seven medical datasets in the t-test. By 
establishing statistical significance across different datasets, the improved KNN 
algorithm demonstrates its effectiveness in dealing with the challenges given by 
medical data. This significance indicates that the enhancements have resulted in real 
changes that can influence clinical decision-making and patient outcomes, rather than 
just numerical increases in prediction accuracy. 

 

CONCLUSIONS AND RECOMMENDATIONS 

In conclusion, the study successfully aimed to enhance the performance of 
the K-Nearest Neighbor (KNN) algorithm in classifying medical diseases by improving 
its data pre-processing. The experiment's utilization of the techniques - SMOTE and 
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Grid search - has been successful for the study. The evaluation and results of the 
enhanced KNN show that it consistently outperformed the existing KNN, achieving 
higher accuracy, precision, RMSE, and MSE in disease prediction while avoiding the 
challenges of overfitting and underfitting. The overall findings of the study underscore 
the effectiveness of the enhanced KNN algorithm in accurately predicting medical 
diseases across diverse datasets. Furthermore, the significance of the enhanced KNN 
algorithm across multiple medical datasets signify a promising advancement in medical 
data analysis. By demonstrating consistent improvements in predictive performance 
and statistical significance, the enhanced KNN algorithm holds great potential for 
enhancing clinical decision support systems, improving patient outcomes, and 
advancing medical research. 

 
The proposed enhancements in this study for KNN exhibited superior performance 

compared to the existing KNN. However, there are still unexplored improvements that 
can be made. Given the diversity of datasets in the medical field, further exploration is 
recommended using different datasets. Additionally, for future studies, testing these 
enhancements in high-dimensional datasets will provide insights into their 
performance in dealing with the "Dimensionality Curse." To further ascertain the 
significance of this study, the researchers also proposed the exploration of its 
applicability beyond medical datasets. 

 

IMPLICATIONS 
 

The findings of this study hold promising improvements in medical diagnostics 
by predicting diseases more accurately and contributing to a more robust framework 
for diagnosing diverse health issues by improving the performance of the K-Nearest 
Neighbor (KNN) algorithm in the classification of medical diseases. Healthcare 
practitioners will be able to take action earlier, resulting in early treatment 
interventions and individualized treatment approaches, as disease prediction becomes 
more accurate. 
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